skip to main content


Search for: All records

Creators/Authors contains: "Fuentes, Jose D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 21, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. Professor Jian Zhen Yu (Ed.)
    using a combination of field experiments and numerical simulations. Specifically, Large Eddy Simulations (LES) were used to resolve emissions of isoprene and monoterpenes, turbulent transport, and air chemistry. The coupled chemistry-transport LES included the effects of isoprene and monoterpenes reactivity due to reactions with hydroxyl radical and ozone. The LES results are used to compute vertically resolved budgets of isoprene and monoterpenes in the rainforest canopy in response to emissions, turbulent transport, surface deposition, and air chemistry. Results indicated that emission and dispersion dominated the isoprene budget as the gases were transported out of the canopy space. In a region limited by nitrogen oxides (with prevailing nitric oxide levels of < 0.5 parts per billion), the in-canopy chemical destruction removed approximately 10% of locally emitted monoterpenes. Hydroxyl radical production rates from the ozonolysis of monoterpenes amounted to ≈ 2 × 106 radicals cm􀀀 3 s􀀀 1 and had similar magnitude to the light-dependent hydroxyl radical formation. One key conclusion was that the Amazonia rainforest abundantly emitted monoterpenes whose in-canopy ozonolysis yielded hydroxyl radicals in amounts similar to the magnitude of light-dependent formation. Reactions of monoterpenes and isoprene with hydroxyl radical and ozone were necessary for the maintenance of the Amazon rainforest canopy as a photochemically active environment suitable to generate oxidants and secondary organic aerosols. 
    more » « less
  4. Abstract. The atmospheric multiphase reaction of dinitrogenpentoxide (N2O5) with chloride-containing aerosol particlesproduces nitryl chloride (ClNO2), which has been observed across theglobe. The photolysis of ClNO2 produces chlorine radicals and nitrogendioxide (NO2), which alter pollutant fates and air quality. However,the effects of local meteorology on near-surface ClNO2 production arenot yet well understood, as most observational and modeling studies focus onperiods of clear conditions. During a field campaign in Kalamazoo, Michigan,from January–February 2018, N2O5 and ClNO2 were measuredusing chemical ionization mass spectrometry, with simultaneous measurementsof atmospheric particulate matter and meteorological parameters. We examinethe impacts of atmospheric turbulence, precipitation (snow, rain) and fog,and ground cover (snow-covered and bare ground) on the abundances ofClNO2 and N2O5. N2O5 mole ratios were lowest duringperiods of lower turbulence and were not statistically significantlydifferent between snow-covered and bare ground. In contrast, ClNO2 moleratios were highest, on average, over snow-covered ground, due to salinesnowpack ClNO2 production. Both N2O5 and ClNO2 moleratios were lowest, on average, during rainfall and fog because ofscavenging, with N2O5 scavenging by fog droplets likelycontributing to observed increased particulate nitrate concentrations. Theseobservations, specifically those during active precipitation and withsnow-covered ground, highlight important processes, including N2O5and ClNO2 wet scavenging, fog nitrate production, and snowpackClNO2 production, that govern the variability in observed atmosphericchlorine and nitrogen chemistry and are missed when considering only clearconditions. 
    more » « less
  5. null (Ed.)